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Abstract

A method is presented for decomposing wave motion into its principle components. The basic idea is a complex

generalization of proper orthogonal decomposition. The method involves the representation of real oscillatory signals as

complex analytic signals. The relationship between complex modes and wave motion is explored. From an ensemble of

complex signals, a complex correlation matrix is formed, and its complex eigensolution is the basis of the decomposition

(like a complex singular value decomposition). The complex eigenvectors contain standing and traveling characteristics.

A traveling index is proposed to quantify the relative degree of traveling and standing in a waveform. A method of

dissecting a wave mode into its traveling and standing parts is also proposed. From the complex modes and modal

coordinates, frequencies, wavelengths, and characteristic wave speeds can be obtained. The method is applied to traveling

and standing-wave examples.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

This paper presents a method of decomposing wave motion into its principle components. The basic idea is
a generalization of proper orthogonal decomposition (POD) [1–3]. POD, or similarly Karhunen–Loeve
decomposition or principle components analysis, is now a standard tool that has been applied to turbulence,
structures, and many other types of systems. For fluids and structures, the POD has been effective at
producing modes that optimize the signal energy distribution in a set of measured time series. POD has been
applied, for example, to characterize spatial coherence in turbulence and structures [1–7], to evaluate the
dimension of the dynamics [3–6,8], to detect modal interactions [9,10], to produce empirical modes for
reduced-order models [11–18], and in system identification [19–22]. The POD is also similar to singular
value decomposition. All of these tools have been compared for structural applications [23]. The similar
biorthogonal decomposition, essentially a singular value decomposition for the application of response
ensembles, has also been applied to fluids and plasmas [24,25].

In specific circumstances, the POD produces the normal modes of a structure [26–29], including 2-D
structures [30]. The related ‘‘smooth decomposition’’ method can be applied in general cases to find structural
modes [31].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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So the POD family of tools is extremely useful, particularly if extracting standing wave components. This
paper addresses the decomposition of nonstanding wave components.

The wavelet transform (e.g. Ref. [32]) is another important tool for analyzing wave motion, and is based on
localized basis functions, dilated and shifted in time for each signal. It is well suited for multiresolution or
time–frequency decomposition of signals [32–36], and obtaining group velocity, dispersion, and attenuation of
propagating waves (e.g. Refs. [37–42]), from measurements of a pair of well-spaced sensors. If the wavelet
transform were applied to many sensors, as the POD is applied for spatial characterization, and as now the
COD is applied, there would be a large dimension of information to process, although still useful for wave
decomposition [39]. It can also be done in 2-D [32,36,41].

The approach presented here is a generalization of POD. The basis for discrete POD, in the time-domain
perspective, is the real eigen solution of the correlation matrix of the measured ensemble. We generalize this
process with the extension of real oscillatory signals to complex phasors. A complex correlation matrix is then
formed, and its complex eigensolution is the basis of the decomposition (like a complex singular value
decomposition). The complex eigenvectors contain standing and traveling components, which can be
identified to produce the full decomposition of traveling and standing waves, whence frequencies and
wavelengths can be obtained. In the process, the complex modal coordinates (much like those used for POD
[43,44], and equivalently the corresponding components of the bi-orthogonal decomposition [24,25] and the
singular value decomposition [45]) can be extracted and used to obtain frequencies and hence characteristic
wave speeds.

In the next section, the basic relationship between complex modes and wave motions is examined. This will
reveal the motivation for seeking the extension of real signals to the complex phaser representations. Then the
decomposition strategy will be laid out and justified. The method will then be applied to examples.

2. Complex modes and wave motions

In this section, we illustrate how a complex modal motion can be interpreted as a combination of traveling
and standing waves. We then show how a pure traveling wave can be written as a complex modal motion.
That is, waves are complex modes.

2.1. Wave interpretation of complex modes

Consider a complex mode of the form xjðtÞ ¼ eatu, where xj is a vector of particle positions, t is time,
a ¼ gþ oi, and u ¼ cþ di is a complex mode, with g, o, c and d being real scalars and vectors. The index j is
used to distinguish modes.

Mathematically, xjðtÞ can be considered as a ‘‘synchronous complex motion’’, in the sense that xj ¼ qðtÞu is
the product of a scalar time function and a fixed vector. However, xjðtÞ does not represent a synchronous
motion in its physical interpretation, as not all particles reach the extrema, or zero, simultaneously. These
complex modal motions occur in vibration systems with gyroscopic terms or general damping [46,47], or with
asymmetric stiffness matrices (flutter).

A linear combination of a complex modal component and its complex conjugate (represented by a bar) is
xðtÞ ¼ xjðtÞ þ x̄jðtÞ ¼ egteiotuþ egte�iotū ¼ egt½ðcosðotÞ þ i sinðotÞÞðcþ diÞ þ ðcosðotÞ � i sinðotÞÞðc� diÞ�, or

xðtÞ ¼ 2egt½cosðotÞc� sinðotÞd�. (1)

This means that the oscillation has a continual transition from the shape c, when time is in phase with the
extremum of the cosine, to the shape d, when time is in phase with the extremum of the sine. The transition
from c to d is cyclic and ongoing until the exponential decay (for go0) diminishes the signal to insignificance.
This cyclic and ongoing shape transition provides the appearance of a wavy motion if c and d are independent.
The relative sizes and degree of independence of c and d dictate the ‘‘amounts’’ of standing wave and traveling
wave components.

Thus the interpretation of a complex modal motion as written above is a motion of frequency o for each
particle, damped exponentially according to g (if go0), with a wave speed of c ¼ o=l, where l is the
wavenumber of c and d.
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2.2. Interpretation of waves as complex modes

Now consider a sinusoidal wave motion of a continuum, for example yðx; tÞ ¼ sin lðx� ctÞ. Then

yðx; tÞ ¼ sin lx cosot� cos lx sinot (2)

by using a trigonometric identity, where o ¼ cl. Then

yðx; tÞ ¼ Re½eiot sin lxþ ieiot cos lx� ¼ Reðzðx; tÞÞ, (3)

where the complex wave motion zðx; tÞ ¼ eiot½sin lxþ i cos lx� perfectly matches the form of a continuous
complex mode.

If the continuous structure were sampled at values x ¼ x1;x2; . . . ; xm, or if lumped particles were indexed by
i ¼ 1; . . . ;m, then the discrete parameter complex wave motion would be z ¼ eiot½cþ id� where c is the
spatially sampled sin lx and d is the spatially sampled cos lx. Then zþ z̄ would produce a real signal with the
interpretation of the previous section.

3. Complex mode decomposition

We first summarize how to express a real oscillatory signal as a complex analytic signal, used in the
decomposition process. We then present the decomposition method, justified via an example.

3.1. Complexification of a real oscillatory signal

Our decomposition method is to be applied to complex representations of signals. So real measured signals
are first extended to the complex world [48,49]. One way to obtain zðtÞ uniquely from a real signal yðtÞ by
looking at the Fourier transform FðyðtÞÞ ¼ ~Y ðoÞ, for which there are complex amplitudes associated with
frequencies iont and �iont, and truncating the �iont from 2 ~Y ðoÞ to produce ~ZðoÞ. The inverse Fourier
transform produces zðtÞ ¼F�1ð ~ZðoÞÞ, which is an analytic signal [48]. More commonly, if yðtÞ ¼ ReðzðtÞÞ,
then the Hilbert transform of y is yH ðtÞ ¼ ImðzðtÞÞ [48,49]. Thus the complex analytic signal [49] is
zðtÞ ¼ yðtÞ þ iyH ðtÞ.

3.2. Complex mode decomposition

This idea is motivated by the POD (time domain perspective), where a correlation matrix is formed. In the
proposed work, we generate a complex correlation matrix (of sampled complex signals zj), and with it, extract
complex orthogonal modes in the same manner as POMs are extracted by POD from a real, symmetric
correlation matrix. The complex orthogonal modes are then interpreted for their traveling and standing wave
components according to the ideas above.

Given the signals, zj , j ¼ 1; . . . ;M, in complex form, where M are the number of sensors distributed on the

structure or specimen, we generate vectors zj ¼ ½zjðt1Þ � � � zjðtNÞ�
T, by sampling at times t1 through tN . We

build an M �N complex ensemble matrix Z ¼ ½z1 � � � zM �
T.

Paralleling POD, we construct a complex correlation matrix R ¼ ð1=NÞZZ̄
T
, where the bar indicates

complex conjugation. If Z ¼ Aþ Bi, then ZZ̄
T
¼ AĀ

T
þ BB̄

T
þ ðBĀ

T
� AB̄

T
Þi. Since R ¼ R̄

T
is complex

Hermitian, it has real eigenvalues and complex eigenvectors. The complex eigenvectors, ui, are unique to a
scaling constant, which can be complex. (Even when normalized, the unit-magnitude complex scaling constant
is not unique.) Furthermore, the Hermitian nature of R implies that

ūTi uj ¼ 0; iaj. (4)

Due to this orthogonality (unitary) property, we can refer to this method as a complex orthogonal
decomposition (COD).

For example, suppose we have a signal with m harmonic wave components, spatially discretized

at x1; . . . ;xM , such that zðtÞ ¼
Pm

j¼1qjðtÞfj
is an M vector with m components to be extracted, with
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qjðtÞ ¼ ðaj þ bjiÞe
ioj t ¼ f je

ioj t and fjðxÞ ¼ cos jlx� i sin jlx, the samples of which at x1; . . . ;xM produce f
j
.

Then, in matrix form, z ¼ Fq, where F ¼ ½f
1
; . . . ;f

M
� is an M �M modal matrix. The signal is uniformly

sampled at times t ¼ t1; . . . ; tN . As such, the ensemble has the form ZM�N ¼ FM�MQM�N .
The complex correlation matrix is then

R ¼
1

N
ZZ̄

T
¼

1

N
FQQ̄

TF̄T
¼ FRQF̄

T
,

where RQ ¼ ð1=NÞQQ̄
T
. The elements of RQ are

rQjk ¼
1

N

XN

l¼1

qjðoj tlÞq̄kðoktlÞ ¼
1

N

XN

l¼1

f je
ioj tl f̄ ke

�ioktl ¼
f j f̄ k

N

XN

l¼1

eiðoj�okÞtl .

If ojaok, then rQjk ! 0 as N !1.
Thus, if the frequencies are all distinct, RQ ! D as N gets large, where D is a diagonal matrix of values

dj ¼ ð1=NÞ
PN

l¼1qjðtlÞq̄jðtlÞ. Hence, the matrix D approaches a diagonal of mean squared amplitudes of the

complex wave components, as N gets large.
In such case, f

j
are (approximate) eigenvectors of R. To see this, consider

Rf
j
� FDFTf

j
¼ FDhj,

where hj is (approximately) a vector of zeros except for the jth element, due to the orthogonality of the

complex harmonic basis functions f. (Even if the basis functions are not harmonic but are orthogonal and
normalized, then hj holds its form.) If f

j
is a discretization of a normalized function fjðxÞ, then

1 ¼

Z L

0

fjðxÞ
2 dx �

XM
i¼1

f2
jiDxi ¼ DxfT

j
f

j
¼

L

M
fT

j
f

j
, (5)

if Dxi ¼ Dx for all i, where fji is the ith element of f
j
, and L is the length of the discretized medium. Thus, the

nonzero value in h will be fT

j
f

j
�M=L, the term fT

j
f

j
representing a rectangular rule approximation of a

continuous parameter orthogonality integral in Eq. (5).
Then

Rf
j
� Fdj ¼ djfj

M=L,

where dj is a vector of zeros except for the jth element which is djM=L. Therefore, f
j
is an approximate

eigenvector, and M=L times the mean squared complex modal magnitude, dj, is the associated eigenvalue,
of the complex correlation matrix R. The quality of the approximation depends on the sample resolution,
i.e. M and N.

Thus, in the example of complex harmonic waveforms with harmonic modulations, the COD extracts the

complex harmonic waveforms and the mean squared amplitude modulations through the eigenvalue problem
associated with the complex correlation matrix R, yielding eigenvectors and eigenvalues as ‘‘complex
orthogonal modes’’ (COMs) and values (COVs). The notion that the COVs are optimal mean squared modal
amplitudes is reinforced by the associated Rayleigh’s quotient, f̄

T
Z̄

T
Zf =f̄

T
f, in which the numerator is the

sum of amplitudes of Zf elements, which are the complex data projected onto f.
Indeed, as waves are a complex generalization of synchronous motions, this COD is a generalization of

POD, and will be able to extract both standing and traveling waves, as interpreted from the extracted complex
modes. Examples will be given shortly.

POD can also recover information about traveling and standing waves. Consider applying POD to a wave
of the form of Eq. (2). The POD applied to a discretization of this distributed parameter signal would lead to
two POMs, which will represent discretizations of sinðxÞ and cosðxÞ. Further interpretation would be needed to
tie these together as components of a single traveling wave. This could be done by using the proper orthogonal
modal coordinates (or equivalently, the modal histories that result from singular value decomposition or bi-
orthogonal decomposition), and recognizing that these two coordinates have the same frequency and are
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901 out of phase. However, the COD will pair these components together, automatically, as real and
imaginary parts of a single complex vector. This capability of POD to get equivalent traveling wave
components only works when the wave components are orthogonal (purely traveling). We will see an example
of this later.

Independently and contemporaneously, Georgiou [50] has applied a complex POD in the frequency domain
for response analysis. Direction finding algorithms MUSIC and ESPRIT [51–54] also make use of a complex
correlation matrix eigenvalue problem, but with different set-up of data arrays, and different emphasis in the
analysis.

3.3. Modal coordinates and wave speed

Similar to writing the complex ensemble as Z ¼ FQ, we can instead define Z ¼ UQd , where U is the matrix
of COD orthogonal modes, and Qd is the ensemble of complex orthogonal modal coordinates. If the modes in
U are normalized, then by complex orthogonality of Eq. (4),

Qd ¼ Ū
T
Z.

This is a complex modal coordinate ensemble matrix, the rows of which are the samples of each modal
coordinate, qjðtÞ, sampled at t ¼ t1; . . . ; tN .

The real and imaginary parts of Qd provide the two time-modulation components of the complex wave,
representing the time modulations of the 901-phased components of the wave. Hence, from the modal
coordinates in ensemble Qd , frequency information can be obtained (e.g. by FFT) for the wave components.
Likewise, the wavenumber lj (2p over the wavelength) can be obtained (by FFT or inspection) from each of
the complex modes uj from the COD. The wave speed of each wave component is then available, as cj ¼ oj=lj .

3.4. Traveling and standing waves

The harmonic-wave example used to motivate the decomposition method in Section 3 was a pure traveling
wave. However, it is likely that a signal ensemble can represent a combination of traveling and standing waves.
Here, we will discuss the quantification of standing and traveling wave components through harmonic
examples.

As seen in Section 2, the complex traveling wave can be thought of as a ‘‘dance’’ between configurations
defined by the real and imaginary parts of the wave mode, by which the real part is exhibited when the time
modulation of the imaginary part is zero, and the imaginary part is exhibited when the time modulation of the
real part is zero.

Imagine, for example, that the real part and imaginary part of the complex wave were the same. For a one-
mode example, the analog of Eq. (1) is

xðtÞ ¼ 2egt½cosðotÞc� sinðotÞc� ¼ 2egt½cosðotÞ � sinðotÞ�c ¼ 2
ffiffiffi
2
p

egt cos ot�
p
4

� �
c, (6)

which is a standing wave.
Now imagine that the real part were much larger than the imaginary part of the complex wave. The ‘‘dance’’

would take place between a dominant configuration and a diminished configuration, making the dominant
configuration appear as almost a standing wave.

More generally, some standing attributes are manifested if the real and imaginary parts of the complex wave
mode have something in common, or if they are not the same in magnitude. We propose a ‘‘traveling index’’
defined as the reciprocal of the condition number of the matrix whose two columns are the real and imaginary
components of the complex mode. Pure traveling waves will have orthogonal components of the same
magnitude, leading to a condition number of 1, and hence a traveling index of one. Deviations, either in the
magnitudes of the component vectors, or the directions, will lead to larger condition numbers. Vectors lying in
the same direction (completely dependent), or of greatly differing magnitudes, will have large condition
numbers, and hence small traveling indices. As the traveling index approaches zero, there is essentially one
independent vector, representing purely standing motion.
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3.4.1. Standing and traveling addends

We can write the COM vector as u ¼ us þ ut, where us is a purely standing addend, and ut is a purely
traveling addend. Then us ¼ cs þ ids and ut ¼ ct þ idt. We aim here to decompose the standing and traveling
addends using the ideas above.

Suppose, for example, kckXkdk. The standing addend of d is the vector addend that is parallel to c, such
that ds ¼ d � ecec, where ec ¼ c=kck is the unit vector in the direction of c. Then the traveling vector addend of
d is dt ¼ d� ds, which is the part that is normal to c. The traveling addend of c is the piece of c of the same size
as dt, such that ct ¼ kdtkec. Finally, the standing part of cs ¼ c� ct.

As such, for a single mode motion, or a single-mode reduced motion, with an ensemble such as Z1 ¼ uūTZ,
we would have in continuous time z1ðtÞ ¼ ½us þ ut�qðtÞ ¼ usqðtÞ þ utqðtÞ ¼ zsðtÞ þ ztðtÞ. It is easy to show that
zsðtÞ is purely standing and ztðtÞ is purely traveling. In this way, a general wave mode can be separated into
standing and traveling addends, which can then be examined independently.

3.5. Summary

We have proposed a COD for extracting wave components. The eigenvectors of a complex correlation
matrix R are the complex orthogonal wave modes (COMs), and the eigenvalues (COVs) indicate the mean
squared amplitudes of modal wave participation. These COMs contain information about the degree that
the motion is traveling. The wavelengths, wave speeds and frequencies can be extracted from the complex
modes and modal coordinates. COD is suited for an ensemble, and it involves familiar computations
(FFT, correlation and eigensolution).

4. Numerical examples

4.1. A traveling pulse

As an example, we construct a sine-squared pulse wave of length L traveling through a medium of length
L ¼ 8p (Fig. 1). The continuous waveform is yðx� ctÞ ¼ yðhÞ, where h ¼ x� ct, with c ¼ L=10 ¼ 4p=5 in this
example. Thus, the time taken for the wave to travel through the medium is T ¼ 10. The function yðhÞ is cast
in a Fourier series, after which h is replaced with x� ct to represent the traveling wave.

In the Fourier series expansion

yðhÞ ¼
a0

2
þ
X1
n¼1

ðan cos nlhþ bn sin nlhÞ, (7)

l ¼ 2p=L ¼ p=4, and the Fourier coefficients are a0 ¼ 0, an ¼ �ð16=npðn2 � 16ÞÞ sinðnp=2Þ, na4, and
a4 ¼ �1=4, with bn ¼ �ð16=npðn2 � 16ÞÞð1� cosðnp=2ÞÞ, na4, and b4 ¼ 0. Note that the mean is removed.
0 5 10 15 20 25
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0.5

1

1.5

2

x

y

Fig. 1. The pulse waveform, generated by ten Fourier series terms, depicted at t ¼ 0. It travels at constant speed to the right, and a new

pulse emerges as the first leaves the end of the medium.



ARTICLE IN PRESS
B.F. Feeny / Journal of Sound and Vibration 310 (2008) 77–90 83
The traveling waveform of yðx� ctÞ is truncated at ten harmonics and then evaluated at 50 equally spaced
points from x ¼ 0 to L, and sampled at Dt ¼ 0:1. We used 202 samples instead of a perfectly spatially
synchronous 200 samples.

Applying trigonometric identities in the harmonic terms of the yðx� ctÞ expression of Eq. (7) suggests
complex harmonic basis of functions of the form cosðnlxÞ þ i sinðnlxÞ, with time modulations einot�fn , where
frequency no ¼ nlc ¼ np=5.

The wave decomposition was performed on Matlab on this 10-harmonic pulse signal. First the signal
yðx� ctÞ was extrapolated into the complex form using the FFT �o truncation method [48]. (This method
was chosen at the time of simulation based on familiarity. The Hilbert transform method was applied in
subsequent trials with similar results.) The decomposition was done on the complex correlation matrix R as
defined above. The real and imaginary parts of the complex COMs visually match the complex harmonic basis
of the yðx� ctÞ expression of Eq. (7). The first two modes are shown in Fig. 2. There is a slight visual deviation
from a pure sinusoid. The traveling indices were computed for each complex mode, and the values for the first
nine modes ranged from 0.9753 (fourth mode) to 0.9932 (nineth mode), indicating the numerical error from
the constructed traveling index of unity. The tenth mode (ordered by magnitude) is noise, since the eighth
harmonic in the pulse wave actually has an amplitude of zero, thereby leading to only nine significant COMs.

Thus, this COD extracted the underlying complex harmonic basis of the Fourier series. The squares of the
mean complex amplitudes, f 2

ðnÞ ¼ a2
n þ b2

n are compared to the eigenvalues, adjusted according to Eq. (5) of
the COD, in Fig. 3.
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Fig. 2. The real (solid lines) and imaginary parts (dashed lines) of the first two COMs of the traveling pulse: (a) mode 1, and (b) mode 2.

0 5 10
0

0.05

0.1

0.15

0.2

0.25

sorted mode index

m
a
g
n
it
u
d
e
 s

q
u
a
re

d

Fig. 3. A comparison between the actual squared modal magnitudes f (� symbols) and those obtained from the COVs (þ symbols), i.e. the

eigenvalues of the associated COMs (after accounting for Eq. (5)) for the traveling pulse.
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The wavelengths, by inspection, are L=n, translating to wavenumbers nl ¼ n=4. The frequencies of the
real parts (or imaginary parts) of the modal coordinates extracted from Qd by FFT (or inspection) were mul-
tiples of 0.6221, which is very close to no ¼ np=5. As such, as constructed, each wave component has the same
speed, c ¼ ðnoÞ=ðnlÞ ¼ 0:6221� 4 ¼ 2:4884 � 4p=5, errors dependent on the synchronicity of the sampling
time.

In summary of this example, the COD extracted complex modes that match the orthogonal complex
harmonic modes generated from the construction of the waveform via the Fourier series. The Fourier basis is
then ‘‘optimal,’’ in terms the complex modal coordinate magnitudes, for this waveform. The COD also
produced wavenumbers, modal coordinate frequencies, and wave speeds.

4.2. A localized standing wave

In this example we look at a standing wave of the same shape as the pulse examined previously. For the
standing wave, yðx; tÞ ¼ qðtÞfðxÞ, where fðxÞ has the same form as yðhÞ in Eq. (7) the previous example, with
l ¼ p=2L, and the same Fourier coefficients as previously. Again, the waveform is constructed with zero mean
(a0 ¼ 0). The time modulation function qðtÞ ¼ sinðotÞ is harmonic with frequency o ¼ p=5.

The wave decomposition is performed in Matlab on this 10-harmonic standing signal. The real ensemble is
first complexified by the FFT method. The decomposition is again done on the complex correlation
matrix R as defined above. The first two modes are shown in Fig. 4. In this case, only one significant mode
results from the COD, and its real part is shaped like the localized wave, while the imaginary part is zero.
(The other modes are noisy like mode 2 depicted in Fig. 4.) As such, this mode is enough to represent the
dynamics, as it was by construction. The dominant POM is visually identical to real part of the dominant
COM, as expected.

By construction, we have a fully standing wave. Fittingly, the traveling index for the significant
COM was computed as 2:36e� 17. In this case, the COD extracted the shape of the dominant standing
wave mode, as a single mode, and did not extract the underlying complex harmonic basis of the Fourier
series. Why? Thinking of the traveling-pulse example, one cannot construct the traveling wave across
the whole medium by means of alternating between a real part of that characteristic shape for one phase
of the complex harmonic, and an imaginary part of an associated shape for the 90� phase of the complex
harmonic. In order for the pulse to travel properly with mathematical complex synchronicity, multiple
basis functions are needed. However, with the standing wave, there is no alternation between two shapes
as the harmonic goes through a 90� phase shift. It is indeed possible to set up a synchronous standing
wave with a single mode shape. A single tool, the COD, a complex generalization of POD, can sort out
the two cases. The real standing wave is represented as a component of the complex wave decomposition.
(In this example, it was the real component, but that is an artifact of the phase of our sinusoidal
modulation qðtÞ.)
0 20 40 60
−0.2

0

0.2

0.4

0.6

position along medium

m
o
d
e
 s

h
a
p
e

0 20 40 60
−0.4

−0.2

0

0.2

0.4

0.6

position along medium

m
o
d
e
 s

h
a
p
e

(a) (b)

Fig. 4. The real (solid lines) and imaginary (dashed lines) parts of the first two COMs: (a) mode 1, and (b) mode 2.
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4.3. Traveling triangle wave

In this example, a wave is constructed not with a harmonic basis, but as a single complex vector f ¼ cþ di,
where c and d are sawtooth functions, out of phase, similar to those shown in Fig. 5. The motion takes place
by alternating between the waveforms c and d, producing a ‘‘rolling’’ effect, in contrast to a sawtooth wave
that translates through the medium. As such, this is an example of a waveform that is not constructed via a
Fourier series of harmonics.

The COD yields, as the single dominant complex mode (Fig. 5), a vector very close to f.
The constructed wave travels through the wavelength L ¼ 2p in 5 s. Thus the wave speed is 1.2566 distance

units per second. A comparison of the wave speed for the dominant mode, based on FFT calculations of the
first modal coordinate history for its frequency, and the first mode shape for its dominant wavenumber, yields
a speed of ol ¼ 1:2566:

A triangular pulse translating through the medium would be constructed with a Fourier series of harmonic
wave components, and like the previous pulse example, would be expected to yield many COMs that match
the harmonic wave components.

This example shows that the COD produces COMs that best represent the underlying structure of the
waveform. There is no propensity to produce harmonic components, only components that are orthogonal in
terms of the Hermitian product.

4.4. Free vibration with general damping

In this final example, we look at a chain of eight unit masses, connected with unit springs, and with at single
unit dashpot attached to the end mass. Formulated with the mass displacements as coordinates, the mass
matrix is proportional to the identity, the hence modal vectors of the undamped system are mutually
orthogonal. In this undamped case, the POD applied to a free vibration with arbitrary initial conditions, or to
a response to random excitation, will yield estimates of the normal modes [26–28].

However, with the attached dashpot, the system has nonproportional (non-Rayleigh [55]), and nonmodal
(non-Caughey [56]) damping. The damped vibration modes are obtained using the state variable description
[46,47]. The equations of motion are

M €xþ C _xþ Kx ¼ 0, (8)

where x is an n� 1 array of mass displacements, M;C; and K, are the n� n mass, damping, and stiffness
matrices, and the dots indicate time derivatives. Then defining a 2n� 1 state vector yT ¼ ½ _xT;xT�, and
introducing the equation M _x�M _x ¼ 0, yields equations of motion of the form

A_yþ By ¼ 0, (9)
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Fig. 5. The real (solid line) and imaginary (dashed line) parts of a single complex orthogonal mode from a constructed triangle wave.
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where A and B are 2n� 2n and symmetric, but neither positive nor negative definite. (A has diagonal n� n

blocks 0 and C and both off-diagonal blocks are M. B is block diagonal with blocks �M and K.) Then under
the assumption of a response of the form y ¼ eat f, the complex modes are obtained from the eigenvalue
problem

aAfþBf ¼ 0, (10)

which in general yields complex eigenvalues a and eigenvectors f. Now 2n� 1 vector f ¼ ½vT;wT�T, where v

corresponds to characteristic shapes of velocity states, and w represents characteristic shapes in displacement.
By the construction of y, v ¼ aw. The vectors f are orthogonal with respect to matrices A and B. Note,
however, that the latter does not imply that the vectors w are orthogonal with respect toM and K. In fact, they
are not.

For this example, the complex eigenvalues and eigenvectors were obtained, and the free single-complex-
mode response was constructed as x ¼ eaj twj þ eāj tw̄j , for some 0ojp2n. In this example,
aj ¼ �0:2236� 1:2998, and wj is depicted in Fig. 6(a). The imaginary part of aj indicates a free oscillation
frequency and real part indicates the decay rate, or the reciprocal of the time constant. The real and imaginary
parts of the mode shape are independent, but not orthogonal. The traveling index was computed as 0.68973,
indicating that there is a strong traveling component, but a significant standing component as well.

Fig. 6(b) contains the strobed still image of the free vibration in this mode (animated in Movie 1 of the
online version of this paper). From either image, it can be intuitively seen that the motion consists of a
combination of standing and traveling components, in that there are no oscillation node points, and the
oscillations to and fro do not simply overlap, trusting that indeed the motion is of a single ‘‘mode’’ and not a
combination of standing modes.

Applying the COD yielded two ‘‘significant’’ modes, with COVs of 0.0815 and 0.0024. (When the modal
motions were made to oscillate without decay, there was only one nonzero COV.) The complex components of
the dominant COM are shown in Fig. 7, plotted along with the displacement partition w of the state-variable
linear normal mode f (solid line). The COM was scaled by a complex nonuniqueness constant to rotate its
plot into a comparable orientation. The traveling index computed from the COM was 0.6656, compared to
0.6897 for the displacement partition of the complex normal mode.

For comparison, POD was also applied and it yielded two significant modes, with POVs of 0.0292 and
0.0133. The POMs plotted against each other, analogous to real and imaginary parts, are shown in Fig. 8(a).
In this perspective, they qualitatively resemble the normal modes and the COMs, the latter of which is scaled
and plotted in a dashed line in Fig. 8(a) for comparison. The POMs are orthonormal by construction, and it
turns out that the COMs are nearly orthogonal in this example (not generally the case), but the magnitudes
differ. The effect of the differing magnitudes of the complex modes results in the differing magnitudes in the
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Fig. 6. (a) The displacement partition from a selected state-variable mode shape. The real part is a solid line, and the imaginary part is the

broken line. The zero displacement of the wall on the left is incorporated into the modal image. (b) Strobed image of the free-vibration in

the selected mode, including the zero displacement of the wall.
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Fig. 7. The dominant complex orthogonal modes (dashed line) and the displacement partition of the state-variable linear normal mode
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POCs of Fig. 8(b). The traveling index can be obtained by analyzing the orientation of the POMs and the
POCs [57].

We can dissect this modal motion into its standing and traveling addends according to the ideas in Section
3.4.1. The traveling part is shown in Fig. 9(a) (animated in Movie 2 of the online paper), and the standing part
is shown in Fig. 9(b) (Movie 3 of the online paper). The last five time samples contained FFT leakage
distortions, and were removed. The axes in these images are made the same to provide a visual clue on the
relative ‘‘amount’’ of traveling and standing, also sensed in a comparison with Fig. 6(b). The node points of
the standing part are clear.

This example shows that the COD produces complex wave components that appropriately represent a
physically generated waveform. The traveling index, and traveling and standing addends of the principle wave
mode are easily examined. The POD, on the other hand, has restriction that the POMs, representing out of
phase modal components, are constrained to be orthonormal.

At the next level of complexity, a multimodal, generally damped free-vibration waveform was also
constructed (not shown here). Since the modal vectors wj were not mutually orthogonal (as they arose from
state modal vectors f

j
that were orthogonal with respect to matrices A and B), the result of the COD was to

generate dominantly three orthogonal complex vectors that did not quite match the true complex structural
modal vectors. This is similar to what happens when POD is applied to a signal ensemble generated from
nonorthogonal modal components. However, analogous to POD, multimodal COD is expected to be useful
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Fig. 9. (a) The traveling part of the waveform, (b) the standing part of the waveform.
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when the hierarchy of wave mode participation is important, and also in wave studies for which generally
damped linear normal modes are not the focus. For multimodal motions, the COD, with real and imaginary
parts, has twice the modal capacity as the POD. The detailed features of the multimodal study are interesting,
and are the subject of continuing stages of the on-going work.

5. Conclusion

This paper presented a method for extracting oscillatory wave components from an ensemble of dynamic
measurements. First, the relationship between complex modes and wave oscillations was explored. Traveling
waves can be cast as ‘‘complex synchronous modes,’’ and general complex modes can represent a mix of
traveling and standing oscillations. A traveling index was proposed to quantify this mix. A method of
separating traveling and standing parts was also presented.

The decomposition method is a complex generalization of POD (or similarly singular value decomposition).
The wave extraction produces a set of complex orthogonal waves, analogous to the real orthogonal modes of
the POD and other methods. The wave components can be analyzed to obtain wavelengths, and the complex
principle modal coordinates can be used to obtain modal frequencies, and in turn wave speeds for traveling
components.

The method was applied to numerical examples of traveling and standing pulses, and the single-complex-
mode free vibration of a multi-degree-of-freedom oscillator with general damping (and complex
normal modes). In the oscillator, the decomposed mode was further separated into its traveling and standing
parts.

When waves are standing, the method produces the same results as POD. When waves are purely
traveling, the method produces the same (and in some cases more) information as POD. But in order for the
traveling pairs to be matched in POD, analysis of the proper modal coordinates is needed, while they
are automatically paired in the COD, at the light cost of extrapolating the response ensembles into com-
plex analytic signal ensembles. When waves are partially traveling and standing, the COD is more efficient
than the POD.

This is the initial study of the method. Future studies may include the robustness to noise, experimental
studies and applications, multimodal studies in generally damped systems, gyroscopic systems, or non-
structural problems, reduced-order modelling, and the expansion to higher dimensions.
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